33 research outputs found

    Using high angular resolution diffusion imaging data to discriminate cortical regions

    Get PDF
    Brodmann's 100-year-old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non-invasive, high-resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non-random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex-wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high-resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion-weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support-vector machine classifier, trained on three distinct areas in repeat 1 achieved 80-82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures such as ex-vivo histology

    Hypervigilance for fear after basolateral amygdala damage in humans

    Get PDF
    Recent rodent research has shown that the basolateral amygdala (BLA) inhibits unconditioned, or innate, fear. It is, however, unknown whether the BLA acts in similar ways in humans. In a group of five subjects with a rare genetic syndrome, that is, Urbach–Wiethe disease (UWD), we used a combination of structural and functional neuroimaging, and established focal, bilateral BLA damage, while other amygdala sub-regions are functionally intact. We tested the translational hypothesis that these BLA-damaged UWD-subjects are hypervigilant to facial expressions of fear, which are prototypical innate threat cues in humans. Our data indeed repeatedly confirm fear hypervigilance in these UWD subjects. They show hypervigilant responses to unconsciously presented fearful faces in a modified Stroop task. They attend longer to the eyes of dynamically displayed fearful faces in an eye-tracked emotion recognition task, and in that task recognize facial fear significantly better than control subjects. These findings provide the first direct evidence in humans in support of an inhibitory function of the BLA on the brain's threat vigilance system, which has important implications for the understanding of the amygdala's role in the disorders of fear and anxiety

    Visualizing the Human Subcortex Using Ultra-high Field Magnetic Resonance Imaging

    Get PDF

    Amygdala neuroanatomy, connectivity, function

    No full text

    In vivo anatomical segmentation of the human amygdala and parcellation of emotional processing

    No full text

    Amygdala neuroanatomy, connectivity, function

    No full text

    United states of the amygdala - how to define borders

    No full text

    United states of the amygdala - how to define borders

    No full text
    corecore